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i. We will term a layer of viscous incompressible liquid moving in another liquid or 
gas a free film if its thickness h measured along the normal n to the mean surface F Ss small 
in comparison to the characteristic scale of motion while the gradients of velocity v and 
temperature 8 within the layer are finite as h + 0. The latter will be true if the viscosity 
and thermal conductivity coefficients of the external liquid do not exceed the corresponding 
characteristics of the film material. Then, in the first approximation, the position of 
the film may be specified by a two-dimensional surface F and its dynamics may be described 
by parameters distributed over F, assuming v and 8 to be continuous functions of the point 
in space x and time t everywhere (local thermodynamic equilibrium principle). In particular, 
Lagrangian coordinates for the film and enveloping phase can be defined, permitting use of 
a phenomenological approach to derivation of the equations of motion of r [i]. The basic 
principles of thermodynamics and theological relationships lead to a closed problem in dy- 
namics of thin liquid films, containing within itself at h = 0 the problem of thermocapil- 
lary convection [2], while the thermodynamic relationships transform to the classical Gibbs 
conditions on an interphase boundary. The equations of motion of isothermal free films of 
viscous and elastoviscous liquids were derived in [3]. 

We introduce the nQtation G for the metric (unit) space tensor, whereupon G F = G - nn 
(with the vector multiplication being tensor) is the metric tensor of the surface F with 
the aid of which we project on F the tensors and differential operators. For example, the 
spatial gradient V is transformed to a surface gradient V F = GF.V (the dot denoting the in- 
ner product), while the volume deformation rate tensor D = (VV)sy m generates a surface de- 
formation rate tensor D r = GF.D.G F = (VFV.GF)sy m. Since the spur D F is equal to the surface 
divergence of the total velocity vector, for t~e material area element JF of the. surface F 
we have the expression JF = JF divr v (for the material volume element J we have J = Jdiv v). 
Here and below, a dot above indicates the full time derivative in the particle. We note 
that div Fv = divF(Gr'v) + k v.n (k = div F n is the sum of the main curvatures of F). Also valid 
is the important expression divFG F = -kn. In fact, in a Euclidean space the tensor G is 
constant, while the curvature tensor VFn does not have normal components, so that divF(G - 

l l n )  = --divF(nn ) = -kn. 

Let p, e, T, and q be the mass density, internal energy, stress tensor, and thermal 
flux vector of the volume phase; PF, eF, TF, and qr are the analogous characteristics of 
the film surface phase. Then the differential laws of conservation of mass, momentum, and 
energy take on the form [i] 

p ' +  p d iv  v - -  O, p(v - -  g) = d iv  T,  (1.1) 

pe = T : V v - -  d iv  q ou t s ide  F;  

Pr + Pr d i v r v  = O, pr (v  - -  g) = d i .vrTr  + n ,  [T] ,  

p re r  = Tr  : VrV -- d i v r q r  - - n .  [q ]on  F, 
( 1 . 2 )  

where g is the external mass force density; the colon denotes the scalar product (convolu- 
tion of second range tensors, the square brackets correspond to the operation of calculating 
the change in a function upon traversing the surface F in the positive direction of the nor- 
mal n, i.e., 

[/1 (x) = l i m  s g n  1] {1 (x + ~ln) - -  / (x  - -  ~]n)}, x ~ F.  
-tl-~ 0 
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Equations (i.i) and (1.2) are a consequence of the integral laws of conservation of 
mass, momentum, and energy for an arbitrary material volume (phase transitions are absent, 
i.e., the surface and volume phases may exchange momentum and energy, but not mass): 

c~ Vt 

P vd3x ~- PrY d'~x = v" Td2x § ~r" Tr dlz § pgd3x + prgd2x, 
I. ~  "~' t J Oa) t OV t o t V ~ 

"-gi- t p + + - - - ~ - + e r  d2x = v . ( T . v - - q ) d 2 x +  
~t  Oot 

+ v -  + y + 
B?t c0t ~t 

Here ~t = F R ~t, w and Vr are unit external normals to the boundaries 8m t and ~u respec- 
tively, while wr is tangent to the surface F. 

The law of conservation of angular momentum is insured by the requirement of symmetry 
of the tensors T and T F. Moreover, the condition of materiality of F and the local thermo- 
dynamic equilibrium principle lead to additional equalities 

x = V, [v] = O, [0] = 0 on F. ( i . 3 )  

To c o m p l e t e  Eqs.  ( 1 . 1 ) - ( 1 . 3 ) ,  we must  t u r n  t o  t h e  f i l m  the rmodynamics  and r h e o l o g y .  

2. Initially we recall the defining relationships of the volume phase, which we will 
consider to be a viscous thermally conductive compressible gas. As is well known, the basic 
thermodynamic identity for the parameters p, e, p (pressure), 0 (absolute temperature) is 
equivalent to the fact that the expression (i/8){de + pd(I/p)} is the complete differential 
of the entropy per unit mass. This latter reduces to the consistency condition de ~ d(I/8) = 
d(p/e) A d(i/p), which for the functions e(p, %) and p(p, 8) can also be written in the form 

p 2 ~ e / %  = - -  0 2 ~ ( p / 0 ) / ~ 0 .  (2.1) 

In  p a r t i c u l a r ,  i t  f o l l o w s  from Eq. ( 2 . 1 )  t h a t  t h e  e n e r g y  of  an i d e a l  gas  (p = Rp0) depends  
s o l e l y  on t e m p e r a t u r e .  The c l a s s i c a l  S t o k e s  and F o u r i e r  laws s p e c i f y  t h e  r h e o l o g y  o f  t h e  
medium 

T = (--p + X div v)G + 2FD, q = --• 0' ( 2 . 2 )  

where X, ~, and K a r e  v i s c o s i t y  and t h e r m a l  c o n d u c t i v i t y  c o e f f i c i e n t s  o f  t he  volume phase .  

Ana logous  d e f i n i n g  e x p r e s s i o n s  can be w r i t t e n  f o r  t h e  f i l m ,  t a k i n g  i n t o  a c c o u n t  c e r t a i n  
differences (as a continuous medium) from the volume phase. In fact, with respect to the 
external medium the film is not only a region of inhomogeneity, but also an anisotropic one, 
i.e., the stress tensor will not be spherical even for an equilibrium situation (the film 
itself is in tension, and the external medium in compression). In fact, disruption of Pas- 
cal's law occurs near the face interphase boundaries of the film. However, from a phenomeno- 
logical viewpoint it is preferable to ascribe the anisotropy of the interphase boundaries 
to the film itself, with the phase interaction energy being referred to a unit mass of the 
film material. 

Let �9 be the thermodynamic stress of the film; p,, the hydrodynamic pressure; p~., the 
density of the film material; whereupon the basic thermodynamic identity leads to (178)" 
{de F + p,d(i/p,) - Td(i/pF) }. Limiting ourselves to the case of incompressible film materi- 
al (0.~ ='const~ and taking E = pFer, we obtain an expression for the differential entropy 
(i/e)~d(s/h) --~d(i/h)}, from which follows the consistency condition d(i/0) A d(s/h) = 
d(T/8) A d(i/h) (the equation which is asymptotically precise as h + O, PF = p,h is valid). 
Thus, the functions E(h, 8) and ~(h~ e) related by the expression 

h~(e~) lak  = 0=a(~0)/00, ( 2 . 3 )  

completely define the film thermodynamics. 
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It is obvious that in equilibrium T r = ~G F - p,hG, where the pressure p, at p, = const 
is no longer a thermodynamic quantity and must be defined from the condition of incompres- 
sibility of the film material. For stability of the film as a thermodynamic system the in- 
equality 8~(h, 8)/8h < 0 must be satisfied, this following from the principle of minimum 
free energy. Because of the latter the limit of �9 as h + 0 is positive and in the first 
approximation Tr .n  = 0. 

We will impose on the nonequilibrium processes the condition of tangency to the surface 
F of external momentum and heat fluxes 

T r . n  = O, q r .n  = O. 

Then the axiom of isotropic linear dependence of TF on D r and of 
of the Stokes and Fourier laws, Eq. (2.2) 

(2.4) 

qr on 7Fe leads to analogs 

Tr = (~ q- %r divr v )a r  + 2~rDr,  qr = --XrVr0, ( 2 . 5 )  

where X F, PF, and ~r are viscosity and thermal conductivity coefficients of the surface phase. 

We now transform Eq. (1.2) by introducing the heat capacity per unit film surface a(h, 
8) = ~e(h, 8)/~8 and the dissipative function ~F = Xr(divrv) z + 2pFDF : Dr to a closed system 
of equations for h, v, and 8: 

+ h divr v = 0, p ,h  (v - -  g) = d i v r  Tr  + n. [T], 
oT . ( 2 . 6 )  

~0 = 0 ~ d l v r v  + O r - - d i v r q r - - n . [ q ]  on r .  

where  t h e r m o d y n a m i c  c o n d i t i o n  ( 2 . 3 )  i s  u s e d .  

3. We w i l l  now f i n d  t h e  r e l a t i o n s h i p  o f  I F ,  PF, and < F t o  t h e  v i s c o s i t y  c o e f f i c i e n t  
p ,  and t h e  t h e r m a l  c o n d u c t i v i t y  < ,  o f  t h e  f i l m  m a t e r i a l .  L e t  T ,  = - p , G  + 2 ~ D ,  be  t h e  s t r e s s  
t e n s o r ,  D, t h e  d e f o r m a t i o n  r a t e  t e n s o r ,  c a l c u l a t e d  f rom t h e  v e l o c i t y  f i e l d  v ,  o f  t h e  f i l m  ma- 
t e r i a l .  From t h e  n o n c o m p r e s s i b i l i t y  c o n d i t i o n  we have  t h e  a s y m p t o t e  as  h + 0 

v , = v - - z d i v r v n ,  I z l < h / 2 ,  

where v is the velocity of the mean surface r, z is the coordinate measured along n. It 
is obvious that 

h/2 h/2 

v -~ ~ v ,dz ,  T r = ~ G r +  ~ T , d z  = 
--hi2 --hi2 

='~Gr - -  p ,hG  + 2~,h  (Dr - -  divr vnn). 

Meanwhile, Eq. (2.4) leads to the equality p, = -2B, divr v. Thus we have the expressions 
[3] 

E r = 2 ~ , h ,  ~r = p,h,  Ur = u,h.  ( 3 . 1 )  

We note that consideration of XF, PF, and KF in the defining expressions (2.5) is necessary 
inthose cases where p, >> p, K, m K (for example for amorphous materials of the glass type 
:th~:visc0sity p, increases greatly with reduction in 8). 

We will demonstrate that Eq. (2.6) at h = 0 yields conditions on the interphase boun- 
dary. In fact, if T(h, 8) + o(8) as h + 0, it immediately follows from Eq. (2.3) that (with 
the prime denoting differentiation), e(h, 8) + 0(8) - 80'(8), a(h, 8) ~ -8o"(8). Since ~, 
and K, in a thin phase mixture are of the order of magnitude of the viscosity and thermal con- 
ductivity of the phases themselves, then in the limit X F, PF, and K F vanish according to 
Eq. (3.1), leading to the conditions 

[@ - -  ~ div v)n - -  2~D.n] = divr{a(O)Gr}, 

- -  0a"(0)0 = 0~'(0) divrv + [• 

which define the thermocapillary convection model [2]. In the present study, the energy con- 
dition was derived for the surface F at rest, which permits calculation of 8 in the form 
ae/at + v. 7F8. On a moving surface F we have 8 = 58/6t + v'VF8, where 6%/6t = 8~/at + v- 
n3~/an, ~ being the arbitrary smooth extension of 8 in the vicinity of F. In fact, the de- 
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rivative 60/6t is equal to the derivative of 8 along the vector field ( y . n n ,  i), tangent 
to the trajectory of the surface F in the space ('x, t), and is independent of the extension 

of w 

We note that in view of the equality diVF(gG F) = VFO - okn from the dynamic condition 
there follows the Laplace expression for the pressure change. Thus, 0(8) is the interphase 
boundary surface tension coefficient and coincides with the free energy. Correspondingly, 
the entropy per unit area of F is equal to --o' (8), so that for a pure phase boundary the 
inequality 0'(8) < 0 is valid. 

4. We will consider the problem of small perturbations of a spherical liquid film with- 
in which a polytropic gas is contained. More precisely, we will seek a solution of system 
(2.6), taking g =0, n.[T] ----pn, n.[q] = 0, where p = p0(V0/V)~ is the average pressure, V = 

i--j'x.nd2x is the gas volume y is the polytropy index, and the normal n is directed outward. 3 P 
In this case the first two equations of Eq. (2.6) lead to conservation laws 

ha x = o,  [hxd x = O. ( 4 . 1 )  
dV J r F 

By choosing the proper Galilean coordinate system we ensure the equality 

f hxdZx = 0 ( 4 . 2 )  
r 

and assume that F is stellate relative to 
tion x = r(s, t)s (s is a point of the unit 
Eqo ( 1 . 3 ) ,  

0 

v = x = r s  + (r t + 

zero. Then we can perform a stereographic projec- 
sphere S) and in view of the first condition of 

s~ ~ u + (r t + r - lu 'Vsr)S.  

Here u = rs is the velocity field component tangent to S, by means of which in the function 
f(s, t) we calculate the total time derivative f = ft + r-lu'Vsf; the subscript corresponds 
to the partial derivative with respect to time. Thus, system (2.6) is reduced to the prob- 
lem of finding the functions r( s, t), u ( s, t), h( s, t), and 8( s, t). We note that, in view 
of the zero value of the viscosity and thermal conductivity coefficients of an ideal gas 
the last conditions of Eq. (1.3) cannot be insured without distinguishing boundary layers. 

The spherically symmetric solution r(t), u = 0, h(t), 8(t) in view of the equalities 
v = rts , T F = (~ + 6B,hrt/r)G S satisfies the ordinary differential equations (hr2)t = 0, 
p,hrtt = p - 2(~ + 6B,hrt/r)/r, a0 t = 20(~T/80)rt/r + 12p,h(rt/r) 2 and initial conditions 
r = r0, r t = r i, h = h0, 8 = 80 at t = 0. Here the functions ~(h, 8), a(h, 8) are specified 
and p = P0(r0/r)3Y. It is obvious that a steady-state solution is possible for P0 = 2T0/r0, 
r i = 0 (the zero subscript denotes characteristics of the equilibrium state). We will in- 
vestigate its stability relative to initial perturbations of r, h, and 8. 

We choose for length, time, velocity, and temperature scales the quantities r0, D,r0/ 
x0, ~0/B,, and 80 , respectively, and introduce the dimensionless numbers 

L = 

8 : - - h a  ~ V -  P*r~176 ~/I--~ c~~176176 
r ~ ' ~ ho~*U*' 

~o ro(c3~) roOolOz' 

We take r = i + R, u = VsU , h = 6(1 + H), 8 = i + @, and linearize the system (2.6), (4.1), 
(4.2) for the basic solution, assuming the functions R(s, t), U(s, t), H(s, t), and@(s, t) 
to be small and of the same order (the linearized equations admit potential perturbations 
of the velocity field). As a result, we obtain the problem 

71~ + 2R t + 5sU = 0, 

WUt = As U -k 2U --  (3H~ + KhH + fo@), 

6WRtt  = AsR + 2R + 26(3t[ t + KhH + Ko@) - -  67Ro, 

6) t : 5LKoH t . M-1As@, 
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( / / +  2R) d~ = O, , (tt + 3R) sd~-s = O, R o = ~ Bd~s, 
S 8 S 

in which separation of variables is possible. 
[Rm(S) is a spherical function of degree m], 
form Fm(m) = 0. Here, 

Thus, let R(s, t) = Rm(S) exp (~t), etc. 
then the dispersion relationship takes on the 

F~(o~) : [o) + M - ~ m  (m + I)1 {(6W&" + ra ~ + m -- 2))4 

x[W~o ~ + 2 (2m ~" + 2m ~ 1) co + Khm(m + t)] + 

+ 4&o (3o + Kh) (Wo + m ') + m -- 2)} + 

+ 6LKgco{6W (rn ~ + m + 4)(o 2 + ( m  2 + m - 2 ) [ 4 5 o + m ( m + t ) ] } ,  m~>2 ,  

F ,  ((o) = ((o + 2M - * )  [Woo 2 + 6(3~o + K~)] + 65LK~e, 

F o (co) : 5W~o ~" + 12&o -~- 2 (3? - -  1) + 45 (Kh + 5LK~). 

Let K h = K6 and 6 + 0, whereupon it is valid to expand the root mm with largest real compo 
nent in powers of a small parameter: 

( 0 ~ , = - -  ---7- . . . .  i +  1 +  K_LK2o  +O(5~) ,  m~>2 ,  

= __.~{ M5 2W 2 
o)~ i +--i~2 [(l  + ~ )  K - - L K e ] }  + O (53), 

He(Oo = ~ 6 / W  for ? > 4-/3. 

From these considerations there follows the expected asymptotic stability of a homogeneous 
spherical film in the linear approximation forpositive K (thermodynamic stabilization me- 
chanism). Also evident is the destabilizing role of the dependence of x on 8, described 
by the parameter LK82. 

The author expresses his indebtedness to V. V. Pukhnachev for formulating the problem 
and evaluating the study. 
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